MATH 210: Introduction to Analysis

Fall 2015-2016, Final, Duration: 120 min.

Exercise 1. The contraction mapping theorem. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Assume that there is $0<k<1$ such that $\left|f^{\prime}(x)\right| \leq k<1$ for all $x \in \mathbb{R}$. Let $x_{0} \in \mathbb{R}$ be any real number and define a sequence by setting $x_{n+1}=f\left(x_{n}\right)$.
(a) (5 points) Prove that f is a contraction.
(b) (10 points) Recall the definition of a Cauchy sequence.
(c) (10 points) Prove that the sequence $\left\{x_{n}\right\}$ is Cauchy.
(d) (5 points) Deduce that the sequence $\left\{x_{n}\right\}$ converges to a real number x^{*}.
(e) (5 points) Prove that x^{*} is a fixed point of f.
(f) (5 points) Prove that x^{*} is the unique fixed point of f.

Exercise 2.

(a) (10 points) Let (X, d) be a metric space and let $f: X \rightarrow \mathbb{R}$ be function. State the definition of continuity of f at x_{0}.
(b) Let (X, d) be a metric space and let $A \subset X$ be dense in X. Assume that $f, g: X \rightarrow \mathbb{R}$ are two continuous functions such that $f(x)=g(x)$ for all $x \in A$. The goal of this question is to prove that f and g are equal. Fix $x_{0} \in X \backslash A$ and $\varepsilon>0$.
i. (5 points) Find δ such that if $d\left(x, x_{0}\right)<\delta$ then $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ and $\left|g(x)-g\left(x_{0}\right)\right|<\varepsilon$.
ii. (3 points) Show that for any $y \in X,\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right| \leq\left|f\left(x_{0}\right)-f(y)\right|+|f(y)-g(y)|+\mid g(y)-$ $g\left(x_{0}\right) \mid$.
iii. (10 points) Show using the previous question that $\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right| \leq 2 \varepsilon$.
iv. (5 points) Deduce that $f\left(x_{0}\right)=g\left(x_{0}\right)$.
v. (2 points) Deduce f and g are equal.
(c) (5 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=0$ for all $x \in \mathbb{Q}$. Determine f.

Exercise 3. (20 points) Let $n \geq 2$ be an integer. Using lower and upper sums for an appropriate partition prove that

$$
\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \leq \log n \leq 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}
$$

Exercise 4.

(a) (10 points) State Rolle's Theorem.
(b) Consider the function $f(x)=\int_{0}^{x+x^{3}}\left(1+\sin ^{2} t\right) d t$.
i. (5 points) Find a root of f.
ii. (10 points) Show using Rolle's theorem that f has only one root on \mathbb{R}.

Exercise 5. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f_{n}(x):=\left\{\begin{array}{l}
n^{2} x(1-n x) \text { if } x \in\left[0, \frac{1}{n}\right] \\
0 \text { otherwise. }
\end{array}\right.
$$

(a) (10 points) Study the pointwise convergence of f_{n} on $[0,1]$.
(b) (10 points) After justifying that f_{n} is Riemann integrable, compute $\int_{0}^{1} f_{n}(t) d t$ for all $n \geq 1$.
(c) ($\mathbf{1 0}$ points) Study the uniform convergence of f_{n} on $[0,1]$.
(d) ($\mathbf{5}$ points) Let $0<a<1$. Study the uniform convergence of f_{n} on $[a, 1]$.

Exercise 6. The goal of this exercise is to give a new proof of the convergence of the series $\sum \frac{1}{n^{\alpha}}$, when $\alpha>1$.

Let $\alpha>1$ and consider the following function on $(0,+\infty)$ defined by

$$
f(x):=-\frac{1}{(\alpha-1) x^{\alpha-1}} .
$$

(a) ($\mathbf{5}$ points) Compute f^{\prime}.
(b) (5 points) Apply the Mean Value Theorem to f on the interval $[k, k+1]$. We denote by $x_{k} \in(k, k+1)$ the point obtained by this theorem.
(c) ($\mathbf{1 0}$ points) Using the previous question, prove that

$$
\sum_{k=1}^{n} \frac{1}{\left(x_{k}\right)^{\alpha}}=\frac{1}{\alpha-1}-\frac{1}{(\alpha-1)(n+1)^{\alpha-1}}
$$

(d) (5 points) Prove that $\sum_{k=1}^{n} \frac{1}{(k+1)^{\alpha}}<\sum_{k=1}^{n} \frac{1}{\left(x_{k}\right)^{\alpha}}$.
(e) (5 points) Deduce that the sequence $\sum_{k=1}^{n} \frac{1}{k^{\alpha}}$ is bounded.
(f) (5 points) Deduce that $\sum \frac{1}{n^{\alpha}}$ is convergent.

Exercise 7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function.
(a) ($\mathbf{1 0}$ points) Supose that f is twice differentiable at x_{0}. Prove that

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-2 f\left(x_{0}\right)+f\left(x_{0}-h\right)}{h^{2}}=f^{\prime \prime}\left(x_{0}\right) .
$$

(b) (5 points) Assume that the limit of $\frac{f\left(x_{0}+h\right)-2 f\left(x_{0}\right)+f\left(x_{0}-h\right)}{h^{2}}$ as $h \rightarrow 0$ exists. Disprove via a counterexample that f is twice differentiable at x_{0}.

